Search results
Results from the WOW.Com Content Network
RNA polymerase (purple) unwinding the DNA double helix. It uses one strand (darker orange) as a template to create the single-stranded messenger RNA (green). In molecular biology , RNA polymerase (abbreviated RNAP or RNApol ), or more specifically DNA-directed/dependent RNA polymerase ( DdRP ), is an enzyme that catalyzes the chemical reactions ...
These two components, RNA polymerase and sigma factor, when paired together, build RNA polymerase holoenzyme which is then in its active form and ready to bind to a promoter and initiate DNA transcription. [8] Once it binds to the DNA, RNA polymerase turns from a closed to an open complex, forming the transcription bubble.
RdRps can be used as drug targets for viral pathogens as their function is not necessary for eukaryotic survival. By inhibiting RdRp function, new RNAs cannot be replicated from an RNA template strand, however, DNA-dependent RNA polymerase remains functional. Some antiviral drugs against Hepatitis C and COVID-19 specifically target RdRp.
In contrast to similar techniques such as polymerase chain reaction and ligase chain reaction, this method involves RNA transcription (via RNA polymerase) and DNA synthesis (via reverse transcriptase) to produce an RNA amplicon (the source or product of amplification) from a target nucleic acid. This technique can be used to target both RNA and ...
Common changes in nucleotide analogues. Nucleic acid analogues are used in molecular biology for several purposes: Investigation of possible scenarios of the origin of life: By testing different analogs, researchers try to answer the question of whether life's use of DNA and RNA was selected over time due to its advantages, or if they were chosen by arbitrary chance; [3]
The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize ...
RNase H then degrades the RNA template and the other primer binds to the cDNA to form double stranded DNA, which RNA polymerase uses to synthesize copies of RNA. [11] One key aspect of NASBA is that the starting material and end product is always single stranded RNA. That being said, it can be used to amplify DNA, but the DNA must be translated ...
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.