Search results
Results from the WOW.Com Content Network
Complete solubility occurs when the solvent and solute have the same valency. [2] A metal is more likely to dissolve a metal of higher valency, than vice versa. [1] [3] [4] The solute and solvent should have similar electronegativity.
In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
The relationship between the solubility of a protein and increasing ionic strength of the solution can be represented by the Cohn equation: = S = solubility of the protein, B is idealized solubility, K is a salt-specific constant and I is the ionic strength of the solution, which is attributed to the added salt.
In this case, Ostwald ripening causes the diffusion of monomers (i.e. individual molecules or atoms) from smaller droplets to larger droplets due to greater solubility of the single monomer molecules in the larger monomer droplets. The rate of this diffusion process is linked to the solubility of the monomer in the continuous (water) phase of ...
What determines a substance's solubility (briefly, main article being solution), including a passing mention of factors such as temperature and/or pressure (for the case of gases) Applications of solubility in chemical processes, and everyday life e.g. making milk from powdered milk; Comments please! --Rifleman 82 16:52, 2 January 2007 (UTC)
Solubility is the property of a gas, liquid or solid substance (the solute) to be held homogeneously dispersed as molecules or ions in a liquid or solid medium (the solvent). In decompression theory, the solubility of gases in liquids is of primary importance, as it is the formation of bubbles from these gases that causes decompression sickness.
Here, the green substance has a greater solubility in the lower layer than in the upper layer. The partition coefficient, abbreviated P, is defined as a particular ratio of the concentrations of a solute between the two solvents (a biphase of liquid phases), specifically for un-ionized solutes, and the logarithm of the ratio is thus log P.