Search results
Results from the WOW.Com Content Network
Circuit: A current from one terminal of a generator, through load component(s) and back into the other terminal. A circuit is, in this sense, a one-port network and is a trivial case to analyse. If there is any connection to any other circuits then a non-trivial network has been formed and at least two ports must exist.
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
A linear circuit is an electronic circuit which obeys the superposition principle.This means that the output of the circuit F(x) when a linear combination of signals ax 1 (t) + bx 2 (t) is applied to it is equal to the linear combination of the outputs due to the signals x 1 (t) and x 2 (t) applied separately:
Four-point measurement of resistance between voltage sense connections 2 and 3. Current is supplied via force connections 1 and 4. In electrical engineering, four-terminal sensing (4T sensing), 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements ...
Wilhelm Cauer found a transformation that could generate all possible equivalents of a given rational, [note 9] passive, linear one-port, [note 8] or in other words, any given two-terminal impedance. Transformations of 4-terminal, especially 2-port, networks are also commonly found and transformations of yet more complex networks are possible.
Simple resistive network with three possible port arrangements: (a) Pole pairs (1, 2) and (3, 4) are ports; (b) pole pairs (1, 4) and (2, 3) are ports; (c) no pair of poles are ports. Any node of a circuit that is available for connection to an external circuit is called a pole (or terminal if it is a physical object).
Linear Algebra: Used to solve systems of linear equations that arise in circuit analysis. Applications include network theory and the analysis of electrical circuits using matrices and vector spaces; Calculus: Essential for understanding changes in electronic signals. Used in the analysis of dynamic systems and control systems.
The resistance of the linear conductor to be substituted is equal to that of the body when a current is passed through it from the two entry points of the linear conductor. He then noted that his result, derived for a general "physical system", also applied to "linear" (in a geometric sense) circuits like those considered by Kirchhoff: