Search results
Results from the WOW.Com Content Network
This template is intended for use on nucleic acid structure pages. To insert use: {{DNA RNA structure}}. On the primary, secondary, tertiary and quaternary structure pages, it displays alternative versions of the image with the relevant section highlighted. Alternatively, for the non-interactive image, use [[File:DNA RNA structure (full).png]]
This template is intended for use on nucleic acid structure pages. To insert use: {{DNA RNA structure}}. On the primary, secondary, tertiary and quaternary structure pages, it displays alternative versions of the image with the relevant section highlighted. Alternatively, for the non-interactive image, use [[File:DNA RNA structure (full).png]]
Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
DNA is transcribed into mRNA molecules, which travel to the ribosome where the mRNA is used as a template for the construction of the protein strand. Since nucleic acids can bind to molecules with complementary sequences, there is a distinction between " sense " sequences which code for proteins, and the complementary "antisense" sequence ...
The DNA is unwound and single-stranded at the start site, the location of RNAP binding. The DNA promoter interaction is interrupted as the RNA polymerase moves down the template DNA strand and the σ factor is released. [7] Once the σ factor dissociates from the RNA polymerase, the transcription continues.