Search results
Results from the WOW.Com Content Network
The following formulas can also be used to approximate the solar azimuth angle, but these formulas use cosine, so the azimuth angle as shown by a calculator will always be positive, and should be interpreted as the angle between zero and 180 degrees when the hour angle, h, is negative (morning) and the angle between 180 and 360 degrees when the ...
The user may choose to replace the inclination angle by its complement, the elevation angle (or altitude angle), measured upward between the reference plane and the radial line—i.e., from the reference plane upward (towards to the positive z-axis) to the radial line. The depression angle is the negative of the elevation angle.
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [1] [2] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [3]
To calculate the azimuth of the Sun or a star given its declination and hour angle at a specific location, modify the formula for a spherical Earth. Replace φ 2 with declination and longitude difference with hour angle, and change the sign (since the hour angle is positive westward instead of east). [citation needed]
Similar equations are coded into a Fortran 90 routine in Ref. [3] and are used to calculate the solar zenith angle and solar azimuth angle as observed from the surface of the Earth. Start by calculating n , the number of days (positive or negative, including fractional days) since Greenwich noon, Terrestrial Time, on 1 January 2000 ( J2000.0 ).
with the altitude angle (a) of the center of the solar disc set to about −0.83° (or −50 arcminutes). The above general equation can be also used for any other solar altitude. The NOAA provides additional approximate expressions for refraction corrections at these other altitudes. [1]
Azimuth is measured eastward from the north point (sometimes from the south point) of the horizon; altitude is the angle above the horizon. The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).