enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...

  3. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...

  4. File:Wedge-diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Wedge-diagram.svg

    Date/Time Thumbnail Dimensions User Comment; current: 01:27, 10 June 2009: 313 × 750 (5 KB): Wizard191: Corrected resultant forced on the wedge so that they are now normal to the wedge surface.

  5. List of states of matter - Wikipedia

    en.wikipedia.org/wiki/List_of_states_of_matter

    Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate

  6. State of matter - Wikipedia

    en.wikipedia.org/wiki/State_of_matter

    In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.

  7. Su–Schrieffer–Heeger model - Wikipedia

    en.wikipedia.org/wiki/Su–Schrieffer–Heeger_model

    In condensed matter physics, the Su–Schrieffer–Heeger (SSH) model or SSH chain is a one-dimensional lattice model that presents topological features. [1] It was devised by Wu-Pei Su, John Robert Schrieffer, and Alan J. Heeger in 1979, to describe the increase of electrical conductivity of polyacetylene polymer chain when doped, based on the existence of solitonic defects.

  8. Seesaw mechanism - Wikipedia

    en.wikipedia.org/wiki/Seesaw_mechanism

    In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier.

  9. Wedge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Wedge_(geometry)

    A wedge is a polyhedron of a rectangular base, with the faces are two isosceles triangles and two trapezoids that meet at the top of an edge. [1]. A prismatoid is defined as a polyhedron where its vertices lie on two parallel planes, with its lateral faces are triangles, trapezoids, and parallelograms; [2] the wedge is an example of prismatoid because of its top edge is parallel to the ...