enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    For example, to factor =, the first try for a is the square root of 5959 rounded up to the next integer, which is 78. Then b 2 = 78 2 − 5959 = 125 {\displaystyle b^{2}=78^{2}-5959=125} . Since 125 is not a square, a second try is made by increasing the value of a by 1.

  4. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    () is always a perfect square. [10] As it is only a necessary condition but not a sufficient one, it can be used in checking if a given triple of numbers is not a Pythagorean triple. For example, the triples {6, 12, 18} and {1, 8, 9} each pass the test that ( c − a )( c − b )/2 is a perfect square, but neither is a Pythagorean triple.

  5. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  6. Perfect square - Wikipedia

    en.wikipedia.org/wiki/Perfect_square

    A perfect square is an element of algebraic structure that is equal to the square of another element. Square number, a perfect square integer. Entertainment

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. In other words, if p, q are of the form 20k + 3 or 20k + 7, then pq = x 2 + 5y 2. Euler later extended this to the conjecture that

  8. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    The naive approach to finding a congruence of squares is to pick a random number, square it, divide by n and hope the least non-negative remainder is a perfect square. For example, 80 2 ≡ 441 = 21 2 ( mod 5959 ) {\displaystyle 80^{2}\equiv 441=21^{2}{\pmod {5959}}} .

  9. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A database of all known perfect rectangles, perfect squares and related shapes can be found at squaring.net. The lowest number of squares need for a perfect tiling of a rectangle is 9 [19] and the lowest number needed for a perfect tilling a square is 21, found in 1978 by computer search. [20]