enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Differential_Dynamic...

    Differential dynamic programming (DDP) is an optimal control algorithm of the trajectory optimization class. The algorithm was introduced in 1966 by Mayne [1] and subsequently analysed in Jacobson and Mayne's eponymous book. [2] The algorithm uses locally-quadratic models of the dynamics and cost functions, and displays quadratic convergence ...

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  4. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Upper case variables represent the entire sentence, and not just the current word. For example, H is a matrix of the encoder hidden state—one word per column. S, T: S, decoder hidden state; T, target word embedding. In the Pytorch Tutorial variant training phase, T alternates between 2 sources depending on the level of teacher forcing used. T ...

  5. Project Jupyter - Wikipedia

    en.wikipedia.org/wiki/Project_Jupyter

    Examples include Amazon SageMaker Notebooks, [9] Google's Colab, [10] [11] and Microsoft's Azure Notebook. [12] Visual Studio Code supports local development of Jupyter notebooks. As of July 2022, the Jupyter extension for VS Code has been downloaded over 40 million times, making it the second-most popular extension in the VS Code Marketplace. [13]

  6. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  7. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.

  8. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.

  9. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  1. Related searches pytorch ddp example function in jupyter java tutorial free code camp build a tribute page

    linux pytorchwho owns pytorch
    project jupyter wikiwhat is pytorch c
    pytorch wikipedia