Search results
Results from the WOW.Com Content Network
In plants, algae, and cyanobacteria, photosynthesis releases oxygen. This oxygenic photosynthesis is by far the most common type of photosynthesis used by living organisms. Some shade-loving plants (sciophytes) produce such low levels of oxygen during photosynthesis that they use all of it themselves instead of releasing it to the atmosphere. [12]
4 (mainly from the soil water via roots). Plants produce oxygen gas (O 2) along with glucose during photosynthesis but then require O 2 to undergo aerobic cellular respiration and break down this glucose to produce ATP.
Cellular respiration happens when a cell takes glucose and oxygen and uses it to produce carbon dioxide, energy, and water. This transaction is important not only for the benefit of the cells, but for the carbon dioxide output provided, which is key in the process of photosynthesis. Without respiration, actions necessary to life, such as ...
Nutrients in the soil are taken up by the plant through its roots, and in particular its root hairs.To be taken up by a plant, a nutrient element must be located near the root surface; however, the supply of nutrients in contact with the root is rapidly depleted within a distance of ca. 2 mm. [14] There are three basic mechanisms whereby nutrient ions dissolved in the soil solution are brought ...
In oxygenic photosynthesis, water (H 2 O) serves as a substrate for photolysis resulting in the generation of diatomic oxygen (O 2). This is the process which returns oxygen to Earth's atmosphere. Photolysis of water occurs in the thylakoids of cyanobacteria and the chloroplasts of green algae and plants. [3]
Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.
Through a series of chemical reactions, the microbes were able to break down soluble compounds called nitrites, molecules made of one nitrogen and two oxygen atoms, to produce molecular oxygen in ...
Cyanobacteria usually obtain a fixed carbon (carbohydrate) by photosynthesis. The lack of water-splitting in photosystem II prevents heterocysts from performing photosynthesis, so the vegetative cells provide them with carbohydrates, which is thought to be sucrose. The fixed carbon and nitrogen sources are exchanged through channels between the ...