enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA methylation - Wikipedia

    en.wikipedia.org/wiki/DNA_methylation

    While DNA methylation does not have the flexibility required for the fine-tuning of gene regulation, its stability is perfect to ensure the permanent silencing of transposable elements. [33] Transposon control is one of the most ancient functions of DNA methylation that is shared by animals, plants and multiple protists. [34]

  3. DNMT1 - Wikipedia

    en.wikipedia.org/wiki/DNMT1

    DNA (cytosine-5)-methyltransferase 1 (Dnmt1) is an enzyme that catalyzes the transfer of methyl groups to specific CpG sites in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1 gene. [5] Dnmt1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.

  4. DNA (cytosine-5)-methyltransferase 3A - Wikipedia

    en.wikipedia.org/wiki/DNA_(cytosine-5)-methyl...

    This enzyme is responsible for de novo DNA methylation. Such function is to be distinguished from maintenance DNA methylation which ensures the fidelity of replication of inherited epigenetic patterns. DNMT3A forms part of the family of DNA methyltransferase enzymes, which consists of the protagonists DNMT1, DNMT3A and DNMT3B. [5] [6]

  5. Contribution of epigenetic modifications to evolution - Wikipedia

    en.wikipedia.org/wiki/Contribution_of_epigenetic...

    DNA methylation can be stable during cell division, allowing for methylation states to be passed to other orthologous genes in a genome. DNA methylation can be reversed via enzymes known as DNA de-methylases, while histone modifications can be reversed by removing histone acetyl groups with deacetylases. The process of DNA methylation reversal ...

  6. Tiling array - Wikipedia

    en.wikipedia.org/wiki/Tiling_array

    This is useful for characterizing regions that are sequenced, but whose local functions are largely unknown. Tiling arrays aid in transcriptome mapping as well as in discovering sites of DNA/protein interaction (ChIP-chip, DamID), of DNA methylation (MeDIP-chip) and of sensitivity to DNase (DNase Chip) and array CGH. [1]

  7. Epigenome - Wikipedia

    en.wikipedia.org/wiki/Epigenome

    The function of DNA strands (yellow) alters depending on how it is organized around histones (blue) that can be methylated (green).. In biology, the epigenome of an organism is the collection of chemical changes to its DNA and histone proteins that affects when, where, and how the DNA is expressed; these changes can be passed down to an organism's offspring via transgenerational epigenetic ...

  8. Promoter (genetics) - Wikipedia

    en.wikipedia.org/wiki/Promoter_(genetics)

    In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein , or can have a function in and of itself, such as tRNA or rRNA.

  9. Genomic imprinting - Wikipedia

    en.wikipedia.org/wiki/Genomic_imprinting

    It is an epigenetic process that involves DNA methylation and histone methylation without altering the genetic sequence. These epigenetic marks are established ("imprinted") in the germline (sperm or egg cells) of the parents and are maintained through mitotic cell divisions in the somatic cells of an organism.