enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  3. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  4. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The arithmetic–geometric mean of two numbers, a 0 and b 0, is found by calculating the limit of the sequences + = +, + =, which both converge to the same limit. If = and = ⁡ then the limit is (⁡) where () is the complete elliptic integral of the first kind

  5. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  6. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.

  7. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    One important application is verifying computations of all digits of pi performed by other means. Rather than having to compute all of the digits twice by two separate algorithms to ensure that a computation is correct, the final digits of a very long all-digits computation can be verified by the much faster Bellard's formula. [3] Formula:

  8. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Finds a formula that allows the nth hexadecimal digit of pi to be calculated without calculating the preceding digits. 28 August 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [36] [37] 56.74 hours? 4,294,960,000: 11 October 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [38] [37] 116.63 hours ...

  9. Piphilology - Wikipedia

    en.wikipedia.org/wiki/Piphilology

    The word is a play on the word "pi" itself and of the linguistic field of philology. There are many ways to memorize π, including the use of piems (a portmanteau, formed by combining pi and poem), which are poems that represent π in a way such that the length of each word (in letters) represents a digit. [1]