enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem.

  3. Pollard's rho algorithm for logarithms - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm_for...

    Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, ... is one of the solutions of ...

  4. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    He give specific logarithm quantities to be added or subtracted in different cases: 23025842 + 0 or 46051684 + 00, or 69077527 + 000, or 92103369 + 0000, or 115129211 + 00000; These correspond to 10,000,000*ln(10), 10,000,000*ln(100), etc. Chapter 5 presents four problems in proportionality and their solution using Napier's logarithms.

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    For example, logarithms appear in the analysis of algorithms that solve a problem by dividing it into two similar smaller problems and patching their solutions. [56] The dimensions of self-similar geometric shapes, that is, shapes whose parts resemble the overall picture are also based on logarithms.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  7. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    Dedicated to the discrete logarithm in (/) where is a prime, index calculus leads to a family of algorithms adapted to finite fields and to some families of elliptic curves. The algorithm collects relations among the discrete logarithms of small primes, computes them by a linear algebra procedure and finally expresses the desired discrete ...

  8. Pollard's kangaroo algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_kangaroo_algorithm

    In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...

  9. Discrete logarithm records - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm_records

    Discrete logarithm records are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions x to the equation = given elements g and h of a finite cyclic group G.