Search results
Results from the WOW.Com Content Network
2 Example. 3 Proofs. Toggle Proofs subsection. 3.1 ... Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the ...
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
These proofs work by comparing computations of single values in two different ways, one using Euler's Criterion and the other using the Binomial theorem. As an example of how Euler's criterion is used, we can use it to give a quick proof of the first supplemental case of determining for an odd prime p: By Euler's criterion () (), but since both ...
Example 1: Finding primes for which a is a residue. Let a = 17. For which primes p is 17 a quadratic residue? We can test prime p's manually given the formula above. In one case, testing p = 3, we have 17 (3 − 1)/2 = 17 1 ≡ 2 ≡ −1 (mod 3), therefore 17 is not a quadratic residue modulo 3.
Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive. For example, φ(4) = 2 ...
Koebe 1/4 theorem (complex analysis) Kolmogorov extension theorem (stochastic processes) Kolmogorov's three-series theorem (mathematical series) Kolmogorov–Arnold representation theorem (real analysis, approximation theory) Kolmogorov–Arnold–Moser theorem (dynamical systems) Kőnig's theorem (bipartite graphs) König's theorem
Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes Kőnig.
This book traces the history of how new results in mathematics have provided surprises to mathematicians through the ages. Examples include how 19th century mathematicians were surprised by the discovery of non-Euclidean geometry and how Godel's incompleteness theorem disappointed many logicians.