enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    The overshoot and undershoot can be understood in this way: kernels are generally normalized to have integral 1, so they send constant functions to constant functions – otherwise they have gain. The value of a convolution at a point is a linear combination of the input signal, with coefficients (weights) the values of the kernel.

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.

  4. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    How overshoot may be controlled by appropriate parameter choices is discussed next. Using the equations above, the amount of overshoot can be found by differentiating the step response and finding its maximum value. The result for maximum step response S max is: [3]

  5. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail

  6. Odlyzko–Schönhage algorithm - Wikipedia

    en.wikipedia.org/wiki/Odlyzko–Schönhage_algorithm

    The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T 1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T 1/2.

  7. Category:Zeta and L-functions - Wikipedia

    en.wikipedia.org/wiki/Category:Zeta_and_L-functions

    Zeta functions and L-functions express important relations between the geometry of Riemann surfaces, number theory and dynamical systems.Zeta functions, and their generalizations such as the Selberg class S, are conjectured to have various important properties, including generalizations of the Riemann hypothesis and various relationships with automorphic forms as well as to the representations ...

  8. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.

  9. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product: