Search results
Results from the WOW.Com Content Network
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM algorithm such as clustering using the soft k-means algorithm, and emphasizes the variational view of the EM algorithm, as described in Chapter 33.7 of version 7.2 (fourth edition).
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Some kind of expectation-maximization algorithm is used in the estimation of the parameters of Rasch models. Algorithms for implementing Maximum Likelihood estimation commonly employ Newton–Raphson iterations to solve for solution equations obtained from setting the partial derivatives of the log-likelihood functions equal to 0. Convergence ...
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
The algorithm uses several types of well known functions: Expectation maximization (EM). EM based heuristic for choosing the EM starting point. Maximum likelihood ratio based (LRT-based) heuristic for determining the best number of model-free parameters. Multi-start for searching over possible motif widths. Greedy search for finding multiple ...
The general algorithm involves message passing and is substantially similar to the belief propagation algorithm (which is the generalization of the forward-backward algorithm). With an algorithm called iterative Viterbi decoding , one can find the subsequence of an observation that matches best (on average) to a given hidden Markov model.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The MM algorithm is an iterative optimization method which exploits the convexity of a function in order to find its maxima or minima. The MM stands for “Majorize-Minimization” or “Minorize-Maximization”, depending on whether the desired optimization is a minimization or a maximization.