Search results
Results from the WOW.Com Content Network
Cytosine can be found as part of DNA, as part of RNA, or as a part of a nucleotide. As cytidine triphosphate (CTP), it can act as a co-factor to enzymes, and can transfer a phosphate to convert adenosine diphosphate (ADP) to adenosine triphosphate (ATP). In DNA and RNA, cytosine is paired with guanine.
Acid-citrate-dextrose or acid-citrate-dextrose solution, also known as anticoagulant-citrate-dextrose or anticoagulant-citrate-dextrose solution (and often styled without the hyphens between the coordinate terms, thus acid citrate dextrose or ACD) is any solution of citric acid, sodium citrate, and dextrose in water.
The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases— adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical .
Purine degradation takes place mainly in the liver of humans and requires an assortment of enzymes to degrade purines to uric acid. First, the nucleotide will lose its phosphate through 5'-nucleotidase. The nucleoside, adenosine, is then deaminated and hydrolyzed to form hypoxanthine via adenosine deaminase and nucleosidase respectively.
Thymine (/ ˈ θ aɪ m ɪ n /) (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil.
Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guanine–cytosine and adenine–thymine) [1] allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. [2]
Adenine (/ ˈ æ d ɪ n iː n /, / ˈ æ d ɪ n ɪ n /) (symbol A or Ade) is a purine nucleotide base. It is one of the nucleobases in the nucleic acids, DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA. In cells adenine, as an independent molecule, is rare.
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.