enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as ′,, ¯,,, or ; its probability is given by P(not A) = 1 − P(A). [31] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 − ⁠ 1 / 6 ⁠ = ⁠ 5 / 6 ⁠ .

  5. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...

  6. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  7. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  8. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.

  9. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .