enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grötzsch's theorem - Wikipedia

    en.wikipedia.org/wiki/Grötzsch's_theorem

    The theorem cannot be generalized to all nonplanar triangle-free graphs: not every nonplanar triangle-free graph is 3-colorable. In particular, the Grötzsch graph and the Chvátal graph are triangle-free graphs requiring four colors, and the Mycielskian is a transformation of graphs that can be used to construct triangle-free graphs that ...

  3. Triangle-free graph - Wikipedia

    en.wikipedia.org/wiki/Triangle-free_graph

    The Grötzsch graph is a triangle-free graph that cannot be colored with fewer than four colors. Much research about triangle-free graphs has focused on graph coloring. Every bipartite graph (that is, every 2-colorable graph) is triangle-free, and Grötzsch's theorem states that every triangle-free planar graph may be 3-colored. [8]

  4. Chvátal graph - Wikipedia

    en.wikipedia.org/wiki/Chvátal_graph

    An alternative conjecture of Bruce Reed states that high-degree triangle-free graphs must have significantly smaller chromatic number than their degree, and more generally that a graph with maximum degree and maximum clique size must have chromatic number [4] ⌈ + + ⌉.

  5. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field.

  6. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    If a non-zero f has both these properties it is called a triangle center function. If f is a triangle center function and a, b, c are the side-lengths of a reference triangle then the point whose trilinear coordinates are f(a,b,c) : f(b,c,a) : f(c,a,b) is called a triangle center.

  7. Saccheri–Legendre theorem - Wikipedia

    en.wikipedia.org/wiki/Saccheri–Legendre_theorem

    Similarly, the existence of at least one triangle with angle sum of less than 180 degrees implies the characteristic postulate of hyperbolic geometry. [ 3 ] One proof of the Saccheri–Legendre theorem uses the Archimedean axiom , in the form that repeatedly halving one of two given angles will eventually produce an angle sharper than the ...

  8. Download, install, or uninstall AOL Desktop Gold - AOL Help

    help.aol.com/articles/aol-desktop-downloading...

    Learn how to download and install or uninstall the Desktop Gold software and if your computer meets the system requirements.

  9. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.