Search results
Results from the WOW.Com Content Network
In mathematical finance, the Greek λ is the logarithmic derivative of derivative price with respect to underlying price. [ citation needed ] In numerical analysis , the condition number is the infinitesimal relative change in the output for a relative change in the input, and is thus a ratio of logarithmic derivatives.
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] () ′ = ′ ′ = () ′.
In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail for noncommuting x and y. Some alternative definitions lead to the same function. For instance, e x can be defined as (+).
Moreover, as the derivative of f(x) evaluates to ln(b) b x by the properties of the exponential function, the chain rule implies that the derivative of log b x is given by [35] [37] = . That is, the slope of the tangent touching the graph of the base- b logarithm at the point ( x , log b ( x )) equals 1/( x ln( b )) .
Beal [28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x 14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes). As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − 1 / 2 ) and ln x.
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Define () = to be the unique solution to the differential equation with initial value: ′ =, =, where ′ = denotes the derivative of y. Functional equation. The exponential function e x {\displaystyle e^{x}} is the unique function f with the multiplicative property f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} for all x , y ...