Search results
Results from the WOW.Com Content Network
Principle of the gas diffusion electrode. The principle of gas diffusion is illustrated in this diagram. The so-called gas distribution layer is located in the middle of the electrode. With only a small gas pressure, the electrolyte is displaced from this pore system. A small flow resistance ensures that the gas can freely flow inside the ...
The oxidizing gas (e.g., pure O 2, O 2 in air, CO 2, etc.) percolates through a hydrophobic layer on the gas diffusion electrode, acting as a cathode. After the gas diffuses to the electrically conducting layer acting as an electrocatalyst (e.g., hydrophilic activated carbon), the gas is electrochemically reduced.
PEMFCs are built out of membrane electrode assemblies (MEA) which include the electrodes, electrolyte, catalyst, and gas diffusion layers. An ink of catalyst, carbon, and electrode are sprayed or painted onto the solid electrolyte and carbon paper is hot pressed on either side to protect the inside of the cell and also act as electrodes.
Methanol cross-over and/or its effects can be alleviated by (a) developing alternative membranes (e.g. [6] [7]), (b) improving the electro-oxidation process in the catalyst layer and improving the structure of the catalyst and gas diffusion layers (e.g. [8]), and (c) optimizing the design of the flow field and the membrane electrode assembly ...
This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under different operating conditions, making them a preferred choice in the industry.
Electrochemical gas sensors are gas detectors that measure the volume of a target gas by oxidizing or reducing the target gas at an electrode and measuring the resulting current. Electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor , an electrolyte or a vacuum ).
The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube.
Studies show that Ni/YSZ electrode was less active in reverse fuel cell operation than in fuel cell operation, and this can be attributed to a diffusion-limited process in the electrolysis direction, or its susceptibility to aging in a high-steam environment, primarily due to coarsening of nickel particles. [12]