Search results
Results from the WOW.Com Content Network
Methylphosphonyl dichloride (DC) or dichloro is an organophosphorus compound. It has commercial application in oligonucleotide synthesis, [1] but is most notable as being a precursor to several chemical weapons agents. It is a white crystalline solid that melts slightly above room temperature. [2]
The SF model has been able to successfully describe the transport of water and salt in RO membranes, showing good agreement with experiments. [ 1 ] [ 4 ] [ 5 ] [ 6 ] The development of the SF model also corrects the misconception that RO water transport is a diffusion -based process.
Methyldichlorophosphine belongs to the group of halophosphines, some of which are used as intermediates in the production of plant protection agents, stabilizers for plastics, and catalysts.
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
Methylphosphonic acid is an organophosphorus compound with the chemical formula CH 3 P(O)(OH) 2. The phosphorus center is tetrahedral and is bonded to a methyl group, two OH groups and an oxygen. Methylphosphonic acid is a white, non-volatile solid that is poorly soluble in organic solvent but soluble in water and common alcohols.
It will react with thionyl chloride to produce methylphosphonic acid dichloride, which is used in the production of sarin and soman nerve agents. Various amines can be used to catalyse this process. [3] It can be used as a sarin-simulant for the calibration of organophosphorus detectors.
Some plants appear not to load phloem by active transport. In these cases, a mechanism known as the polymer trap mechanism was proposed by Robert Turgeon . [ 5 ] In this model, small sugars such as sucrose move into intermediary cells through narrow plasmodesmata, where they are polymerised to raffinose and other larger oligosaccharides .
The glucose transporter (GLUTs) is a type of uniporter responsible for the facilitated diffusion of glucose molecules across cell membranes. [9] Glucose is a vital energy source for most living cells, however, due to its large size, it cannot freely move through the cell membrane. [16]