Search results
Results from the WOW.Com Content Network
Typical eukaryotic cell. Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take ...
Whereas molecular weight (molar mass) for D-glucose monohydrate is 198.17 g/mol, [48] [49] that for anhydrous D-glucose is 180.16 g/mol [50] [51] [52] The density of these two forms of glucose is also different. [specify] In terms of chemical structure, glucose is a monosaccharide, that is, a simple sugar.
Respiratory quotient. The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
Dioxygen (O. 2) plays an important role in the energy metabolism of living organisms. Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water ...
About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium. All 11 are necessary for life. The remaining elements are trace elements, of which more than a dozen are ...
To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
The Clark electrode[1][2] is an electrode that measures ambient oxygen partial pressure in a liquid using a catalytic platinum surface according to the net reaction: [3] O 2 + 4 e − + 4 H + → 2 H 2 O. It improves on a bare platinum electrode by use of a membrane to reduce fouling and metal plating onto the platinum. [4]
Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 10 15 tonnes). [19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O