Search results
Results from the WOW.Com Content Network
If the data are first encoded in a factorial way, however, then the naive Bayes classifier will achieve its optimal performance (compare Schmidhuber et al. 1996). To create factorial codes, Horace Barlow and co-workers suggested to minimize the sum of the bit entropies of the code components of binary codes (1989).
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
The hyperfactorials were studied beginning in the 19th century by Hermann Kinkelin [3] [4] and James Whitbread Lee Glaisher. [5] [4] As Kinkelin showed, just as the factorials can be continuously interpolated by the gamma function, the hyperfactorials can be continuously interpolated by the K-function.
This defines the factorial function using its recursive definition. In contrast, it is more typical to define a procedure for an imperative language. In lisps and lambda calculus, functions are generally first-class citizens. Loosely, this means that functions can be inputs and outputs for other functions.
[3] [9] Factor is implemented in Factor and C++. It was originally bootstrapped from an earlier Java implementation. Today, the parser and the optimizing compiler are written in the language. Certain basic parts of the language are implemented in C++ such as the garbage collector and certain primitives.
For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [ 2 ]
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.