enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process mechanisms. A laminar flow design for animal husbandry of rats for disease management was developed by Beall et al. 1971 and became a standard around the world [9] including in the then-Eastern Bloc. [10]

  3. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]

  4. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    Shown is a sphere in Stokes flow, at very low Reynolds number. Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, [1] is a type of fluid flow where advective inertial forces are small compared with viscous forces. [2] The Reynolds number is low, i.e. . This is a typical situation in flows where the ...

  5. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In the case of laminar flow, for a circular cross section: =, =, where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well ...

  7. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    In fluid mechanics and transport phenomena, an eddy is not a property of the fluid, but a violent swirling motion caused by the position and direction of turbulent flow. [4] A diagram showing the velocity distribution of a fluid moving through a circular pipe, for laminar flow (left), time-averaged (center), and turbulent flow, instantaneous ...

  8. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    •2: attached flow (Stokes flow) and steady separated flow, •3: separated unsteady flow, having a laminar flow boundary layer upstream of the separation, and producing a vortex street, •4: separated unsteady flow with a laminar boundary layer at the upstream side, before flow separation, with downstream of the sphere a chaotic turbulent wake,

  9. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    In axisymmetric flow another stream function formulation, called the Stokes stream function, can be used to describe the velocity components of an incompressible flow with one scalar function. The incompressible Navier–Stokes equation is a differential algebraic equation , having the inconvenient feature that there is no explicit mechanism ...