Search results
Results from the WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
A polar plotter also known as polargraph or Kritzler is a plotter which uses two-center bipolar coordinates to produce vector drawings using a pen suspended from strings connected to two pulleys at the top of the plotting surface. This gives it two degrees of freedom and allows it to scale to fairly large drawings simply by moving the motors ...
Two-center bipolar coordinates. In mathematics, two-center bipolar coordinates is a coordinate system based on two coordinates which give distances from two fixed centers and . [1] This system is very useful in some scientific applications (e.g. calculating the electric field of a dipole on a plane). [2] [3]
Bipolar coordinates are a two-dimensional orthogonal coordinate system based on the Apollonian circles. [1] There is also a third system, based on two poles ( biangular coordinates ). The term "bipolar" is further used on occasion to describe other curves having two singular points (foci), such as ellipses , hyperbolas , and Cassini ovals .
Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C. If a point A lies on the polar line q of another point Q, then Q lies on the polar line a of A. More generally, the polars of all the points on the line q must pass through its pole Q.
The connection with Green's theorem can be understood in terms of integration in polar coordinates: in polar coordinates, area is computed by the integral (()), where the form being integrated is quadratic in r, meaning that the rate at which area changes with respect to change in angle varies quadratically with the radius.
In polar coordinates, the polar tangential angle is defined as the angle between the tangent line to the curve at the given point and ray from the origin to the point. [6] If ψ denotes the polar tangential angle, then ψ = φ − θ , where φ is as above and θ is, as usual, the polar angle.