Search results
Results from the WOW.Com Content Network
Cofactors can be divided into two major groups: organic cofactors, such as flavin or heme; and inorganic cofactors, such as the metal ions Mg 2+, Cu +, Mn 2+ and iron–sulfur clusters. Organic cofactors are sometimes further divided into coenzymes and prosthetic groups. The term coenzyme refers specifically to enzymes and, as such, to the ...
Some NAD is converted into the coenzyme nicotinamide adenine dinucleotide phosphate (NADP), whose chemistry largely parallels that of NAD, though its predominant role is as a coenzyme in anabolic metabolism. In the name NAD +, the superscripted plus sign indicates the positive formal charge on one of its nitrogen atoms. A biological coenzyme ...
Cofactors can be either inorganic (e.g., metal ions and iron-sulfur clusters) or organic compounds, (e.g., [Flavin group|flavin] and heme). Organic cofactors can be either prosthetic groups, which are tightly bound to an enzyme, or coenzymes, which are released from the enzyme's active site during the reaction.
It is the most common coenzyme in sulfotransferase reactions and hence part of sulfation pathways. [1] It is endogenously synthesized by organisms via the phosphorylation of adenosine 5′-phosphosulfate (APS), an intermediary metabolite. [2]
Oxidative phosphorylation in the eukaryotic mitochondrion is the best-understood example of this process. The mitochondrion is present in almost all eukaryotes, with the exception of anaerobic protozoa such as Trichomonas vaginalis that instead reduce protons to hydrogen in a remnant mitochondrion called a hydrogenosome .
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
Pyridoxal phosphate has numerous roles in human body. A few examples below: Metabolism and biosynthesis of serotonin. Pyridoxal phosphate is a cofactor of aromatic L-amino acids decarboxylase. This allows for conversion of 5-hydroxytryptophan (5-HTP) into serotonin (5-HT). This reaction takes place in serotonergic neurons.
In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group , which may be in the form of FAD or flavin mononucleotide (FMN).