Search results
Results from the WOW.Com Content Network
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
The boundary value problem solver's performance suffers from this. Even stable and well-conditioned ODEs may make for unstable and ill-conditioned BVPs. A slight alteration of the initial value guess y 0 may generate an extremely large step in the ODEs solution y(t b; t a, y 0) and thus in the values of the function F whose root is sought. Non ...
Boundary value problems (BVPs) are usually solved numerically by solving an approximately equivalent matrix problem obtained by discretizing the original BVP. [28] The most commonly used method for numerically solving BVPs in one dimension is called the Finite Difference Method. [3]
The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem. An older proof of the Picard–Lindelöf theorem constructs a sequence of functions which converge to the solution of the integral equation, and thus, the solution of the initial value problem.
Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .
Shooting methods proceed by guessing a value of λ, solving an initial value problem defined by the boundary conditions at one endpoint, say, a, of the interval [a,b], comparing the value this solution takes at the other endpoint b with the other desired boundary condition, and finally increasing or decreasing λ as necessary to correct the ...
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]