Search results
Results from the WOW.Com Content Network
A boundary condition which specifies the value of the function itself is a Dirichlet boundary condition, or first-type boundary condition. For example, if one end of an iron rod is held at absolute zero, then the value of the problem would be known at that point in space. A boundary condition which specifies the value of the normal derivative ...
In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. [1] When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain.
In mathematics, the Dirichlet boundary condition is imposed on an ordinary or partial differential equation, such that the values that the solution takes along the boundary of the domain are fixed. The question of finding solutions to such equations is known as the Dirichlet problem .
Robin boundary conditions are commonly used in solving Sturm–Liouville problems which appear in many contexts in science and engineering. In addition, the Robin boundary condition is a general form of the insulating boundary condition for convection–diffusion equations. Here, the convective and diffusive fluxes at the boundary sum to zero:
In mathematics, a Cauchy (French:) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists.
Such conditions are called natural boundary conditions. The preceding reasoning is not valid if σ {\displaystyle \sigma } vanishes identically on C . {\displaystyle C.} In such a case, we could allow a trial function φ ≡ c , {\displaystyle \varphi \equiv c,} where c {\displaystyle c} is a constant.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set.