enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The term zero-shot learning itself first appeared in the literature in a 2009 paper from Palatucci, Hinton, Pomerleau, and Mitchell at NIPS’09. [5] This terminology was repeated later in another computer vision paper [ 6 ] and the term zero-shot learning caught on, as a take-off on one-shot learning that was introduced in computer vision ...

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    In-context learning, refers to a model's ability to temporarily learn from prompts.For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning.

  4. MuZero - Wikipedia

    en.wikipedia.org/wiki/MuZero

    MuZero (MZ) is a combination of the high-performance planning of the AlphaZero (AZ) algorithm with approaches to model-free reinforcement learning. The combination allows for more efficient training in classical planning regimes, such as Go, while also handling domains with much more complex inputs at each stage, such as visual video games.

  5. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [1] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [25] and that it had been pre-published while waiting for completion of its review. [26]

  6. One-shot learning (computer vision) - Wikipedia

    en.wikipedia.org/wiki/One-shot_learning...

    One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning -based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples.

  7. Category:Machine learning algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Machine_learning...

    Zero-shot learning This page was last edited on 16 June 2019, at 10:25 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 License ...

  8. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    CLIP can perform zero-shot image classification tasks. This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that ...

  9. AlphaGo Zero - Wikipedia

    en.wikipedia.org/wiki/AlphaGo_Zero

    AlphaGo Zero is a version of DeepMind's Go software AlphaGo. AlphaGo's team published an article in Nature in October 2017 introducing AlphaGo Zero, a version created without using data from human games, and stronger than any previous version. [ 1 ]