Search results
Results from the WOW.Com Content Network
The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.
What this means is that we are adding up the probabilities that, given k draws from a distribution, two of them differ by r, and the remaining k − 2 draws all fall between the two extreme values. If we change variables to u where u = t − 1 2 r {\displaystyle u=t-{\tfrac {1}{2}}r} is the low-end of the range, and define F X as the cumulative ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
The cumulative distribution function (cdf) of the half-logistic distribution is intimately related to the cdf of the logistic distribution. Formally, if F ( k ) is the cdf for the logistic distribution, then G ( k ) = 2 F ( k ) − 1 is the cdf of a half-logistic distribution.
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.