Search results
Results from the WOW.Com Content Network
Golden rectangle. a b = a+b a = φ. In geometry, a golden rectangle is a rectangle with side lengths in golden ratio or with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity: if a square is added to the long side, or removed from the short side, the result is a golden ...
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
Pandiagonal magic square. A pandiagonal magic square or panmagic square (also diabolic square, diabolical square or diabolical magic square) is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the square, also add up to the magic constant.
A dynamic rectangle is a right-angled, four-sided figure (a rectangle) with dynamic symmetry which, in this case, means that aspect ratio (width divided by height) is a distinguished value in dynamic symmetry, a proportioning system and natural design methodology described in Jay Hambidge 's books. These dynamic rectangles begin with a square ...
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is . An identity matrix of any size, or any ...
Lemma: in a simple rectilinear polygon, a maximal square that does not contain a knob is a separator. [3] A square containing a knob may or may not be a separator. The number of different separator squares may be infinite and even uncountable. For example, in a rectangle, every maximal square not touching one of the shorter sides is a separator.
The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel. A square has Schläfli symbol {4}.
The square lattice's symmetry category is wallpaper group p4m. A pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. An upright square lattice can be viewed as a diagonal square lattice with a mesh size that is √2 times as large, with the centers of the squares added.