enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N. Each odd number has such a representation. Indeed, if is a factorization of N, then.

  4. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...

  6. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    More generally, the difference of the squares of two numbers is the product of their sum and their difference. That is, = (+) This is the difference-of-squares formula, which can be useful for mental arithmetic: for example, 47 × 53 can be easily computed as 50 2 − 3 2 = 2500 − 9 = 2491.

  7. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 72 + 492. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  8. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    The red figure is the Minkowski sum of blue and green figures. In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B: {\displaystyle A+B=\ {\mathbf {a} +\mathbf {b} \,|\,\mathbf {a} \in A,\ \mathbf {b} \in B\}} The Minkowski difference (also Minkowski ...

  9. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This argument is followed by a similar version for the right rectangle and the remaining square. Putting the two rectangles together to reform the square on the hypotenuse, its area is the same as the sum of the area of the other two squares.