enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Equivalent statement 2: x n + y n = z n, where integer n3, has no non-trivial solutions x, y, z ∈ Q. This is because the exponents of x , y , and z are equal (to n ), so if there is a solution in Q , then it can be multiplied through by an appropriate common denominator to get a solution in Z , and hence in N .

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    By the lemma above, since s is odd and its cube is equal to a number of the form 3w 2 + v 2, it too can be expressed in terms of smaller coprime numbers, e and f. s = e 2 + 3f 2. A short calculation shows that v = e(e 2 − 9f 2) w = 3f(e 2 − f 2) Thus, e is odd and f is even, because v is odd. The expression for 18w then becomes

  4. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.

  6. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    (The fundamental theorem of algebra is the special case n = 1.) This exponential behavior makes solving polynomial systems difficult and explains why there are few solvers that are able to automatically solve systems with Bézout's bound higher than, say, 25 (three equations of degree 3 or five equations of degree 2 are beyond this bound).

  7. Catalan number - Wikipedia

    en.wikipedia.org/wiki/Catalan_number

    The only Catalan numbers C n that are odd are those for which n = 2 k − 1; all others are even. The only prime Catalan numbers are C 2 = 2 and C 3 = 5. [1] The only known odd Catalan Numbers which do not have last digit 5 are C0 = 1, C1 = 1, C7 = 429, C31, C127 and C255. The Catalan numbers have the integral representations [2] [3]

  8. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...

  9. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as (−n) 3 ...