enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA polymerase - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase

    DNA polymerase's ability to slide along the DNA template allows increased processivity. There is a dramatic increase in processivity at the replication fork. This increase is facilitated by the DNA polymerase's association with proteins known as the sliding DNA clamp. The clamps are multiple protein subunits associated in the shape of a ring.

  3. Polymerase - Wikipedia

    en.wikipedia.org/wiki/Polymerase

    Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.

  4. DNA polymerase I - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase_I

    DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes.

  5. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Function in DNA replication DNA helicase: Also known as helix destabilizing enzyme. Helicase separates the two strands of DNA at the Replication Fork behind the topoisomerase. DNA polymerase: The enzyme responsible for catalyzing the addition of nucleotide substrates to DNA in the 5′ to 3′ direction during DNA replication.

  6. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    Required for initiation and elongation stages of DNA replication. Implicated in chromatin binding of Cdc45 and DNA polymerase α. Also required for stability of DNA polymerase α catalytic subunit in the budding yeast S. cerevisiae. Mrc1: Couple leading-strand synthesis with the CMG complex helicase activity. Metazoan homolog is known as Claspin.

  7. Terminal deoxynucleotidyl transferase - Wikipedia

    en.wikipedia.org/wiki/Terminal_deoxynucleotidyl...

    Unlike most DNA polymerases, it does not require a template. The preferred substrate of this enzyme is a 3'-overhang, but it can also add nucleotides to blunt or recessed 3' ends. Further, TdT is the only polymerase that is known to catalyze the synthesis of 2-15nt DNA polymers from free nucleotides in solution in vivo. [13]

  8. DNA polymerase alpha - Wikipedia

    en.wikipedia.org/wiki/DNA_Polymerase

    DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1, POLA2, PRIM1, and PRIM2. [2] Pol α has limited processivity and lacks 3′ exonuclease activity for proofreading errors.

  9. DNA polymerase II - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase_II

    DNA polymerase II (also known as DNA Pol II or Pol II) is a prokaryotic DNA-dependent DNA polymerase encoded by the PolB gene. [1] DNA Polymerase II is an 89.9-kDa protein and is a member of the B family of DNA polymerases. It was originally isolated by Thomas Kornberg in 1970, and characterized over the next few years.