Search results
Results from the WOW.Com Content Network
Data fusion is the process of integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by any individual data source. Data fusion processes are often categorized as low, intermediate, or high, depending on the processing stage at which fusion takes place. [ 1 ]
Direct fusion is the fusion of sensor data from a set of heterogeneous or homogeneous sensors, soft sensors, and history values of sensor data, while indirect fusion uses information sources like a priori knowledge about the environment and human input. Sensor fusion is also known as (multi-sensor) data fusion and is a subset of information fusion.
Information fusion, which is a related term, involves the combination of information into a new set of information towards reducing redundancy and uncertainty. [ 1 ] Examples of technologies available to integrate information include deduplication , and string metrics which allow the detection of similar text in different data sources by fuzzy ...
Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.
The RNNsearch model introduced an attention mechanism to seq2seq for machine translation to solve the bottleneck problem (of the fixed-size output vector), allowing the model to process long-distance dependencies more easily. The name is because it "emulates searching through a source sentence during decoding a translation".
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).