Search results
Results from the WOW.Com Content Network
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring , discrete logarithm , graph isomorphism , and the shortest vector problem .
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
The Burnside problem for groups with bounded exponent can now be restated as follows: Burnside problem II. For which positive integers m, n is the free Burnside group B(m, n) finite? The full solution to Burnside problem in this form is not known. Burnside considered some easy cases in his original paper: B(1, n) is the cyclic group of order n.
A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.
This problem is a special case of the subgraph isomorphism problem, [5] which asks whether a given graph G contains a subgraph that is isomorphic to another given graph H; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group. [6]
The problem of finding a Sylow subgroup of a given group is an important problem in computational group theory. One proof of the existence of Sylow p-subgroups is constructive: if H is a p-subgroup of G and the index [G:H] is divisible by p, then the normalizer N = N G (H) of H in G is also such that [N : H] is divisible by p.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
The group G has solvable subgroup membership problem, that is, there is an algorithm that, given arbitrary words w, u 1, ..., u n decides whether or not w represents an element of the subgroup generated by u 1, ..., u n. [18] The group G is subgroup separable, that is, every finitely generated subgroup is closed in the pro-finite topology on G ...