Search results
Results from the WOW.Com Content Network
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one. The percentage overshoot (PO) is related to damping ratio (ζ) by:
In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
Matsumoto zeta function; Minakshisundaram–Pleijel zeta function of a Laplacian; Motivic zeta function of a motive; Multiple zeta function, or Mordell–Tornheim zeta function of several variables; p-adic zeta function of a p-adic number; Prime zeta function, like the Riemann zeta function, but only summed over primes
The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of ...
The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ ( s ) has a simple zero at each even negative integer s = −2 n , known as the trivial zeros of ζ ( s ) .