Search results
Results from the WOW.Com Content Network
Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5] R. Poya, A. J. Gil and R. Ortigosa C++ 2016 0.6.4 / 06.2023 Free MIT License: Fastor is a high performance tensor (fixed multi-dimensional array) library for modern C++. GNU Scientific Library [6] GNU Project C, C++ 1996
A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.
If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
More generally, a multidimensional array type can be called a tensor type, by analogy with the physical concept, tensor. [ 2 ] Language support for array types may include certain built-in array data types, some syntactic constructions ( array type constructors ) that the programmer may use to define such types and declare array variables, and ...
Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or . Concretely, if the dimension n = dim ( V ) {\displaystyle n={\text{dim}}(V)} of V {\displaystyle V} is finite, then, after making a choice of basis , we can view such vector spaces as R n {\displaystyle \mathbb {R} ^{n}} or ...
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors.A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics.
The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...