Search results
Results from the WOW.Com Content Network
The following apply for the nuclear reaction: a + b ↔ R → c in the centre of mass frame , where a and b are the initial species about to collide, c is the final species, and R is the resonant state .
The term atomic physics can be associated with nuclear power and nuclear weapons, due to the synonymous use of atomic and nuclear in standard English. Physicists distinguish between atomic physics—which deals with the atom as a system consisting of a nucleus and electrons—and nuclear physics , which studies nuclear reactions and special ...
Nuclear reactions may be shown in a form similar to chemical equations, for which invariant mass must balance for each side of the equation, and in which transformations of particles must follow certain conservation laws, such as conservation of charge and baryon number (total atomic mass number). An example of this notation follows:
In physics and chemistry, specifically in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and electron spin resonance (ESR), the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M = (M x, M y, M z) as a function of time when relaxation times T 1 and T 2 are present.
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics , which studies the atom as a whole, including its electrons .
Nuclear matter is an idealized system of interacting nucleons (protons and neutrons) that exists in several phases of exotic matter that, as of yet, are not fully established. [2] It is not matter in an atomic nucleus , but a hypothetical substance consisting of a huge number of protons and neutrons held together by only nuclear forces and no ...
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.