Search results
Results from the WOW.Com Content Network
Comparison of 1 square yard with some Imperial and metric units of area. The square yard (Northern India: gaj, Pakistan: gaz) is an imperial unit and U.S. customary unit of area. It is in widespread use in most of the English-speaking world, particularly the United States, United Kingdom, Canada, Pakistan and India.
Animation depicting the process of completing the square. (Details, animated GIF version)In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1]
1 acre = 4,840 square yards = 43,560 square feet. An acre is approximately 40% of a hectare. On the atomic scale, area is measured in units of barns, such that: [13] 1 barn = 10 −28 square meters. The barn is commonly used in describing the cross-sectional area of interaction in nuclear physics. [13]
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system— shown here in the mathematics convention —the sphere is adapted as a unit sphere , where the radius is set to unity and then can generally be ...
Tarski's circle-squaring problem is the challenge, posed by Alfred Tarski in 1925, [1] to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. It is possible, using pieces that are Borel sets, but not with pieces cut by Jordan curves.
The problem has two parts: what aspect ratios are possible, and how many different solutions are there for a given n. [7] Frieling and Rinne had previously published a result in 1994 that states that the aspect ratio of rectangles in these dissections must be an algebraic number and that each of its conjugates must have a positive real part. [ 3 ]