enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.

  3. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    By definition, all manifolds are topological manifolds, so the phrase "topological manifold" is usually used to emphasize that a manifold lacks additional structure, or that only its topological properties are being considered. Formally, a topological manifold is a topological space locally homeomorphic to a Euclidean space.

  4. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are:

  5. Differential topology - Wikipedia

    en.wikipedia.org/wiki/Differential_topology

    In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.

  6. Smooth structure - Wikipedia

    en.wikipedia.org/wiki/Smooth_structure

    A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for .

  7. List of manifolds - Wikipedia

    en.wikipedia.org/wiki/List_of_manifolds

    Differentiable (smooth) manifold; Piecewise linear manifold; Lipschitz manifold; Topological manifold; Manifolds with additional structure. Almost complex manifold;

  8. Geometric topology - Wikipedia

    en.wikipedia.org/wiki/Geometric_topology

    Local flatness is a property of a submanifold in a topological manifold of larger dimension. In the category of topological manifolds, locally flat submanifolds play a role similar to that of embedded submanifolds in the category of smooth manifolds. Suppose a d dimensional manifold N is embedded into an n dimensional manifold M (where d < n).

  9. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    A parametric surface need not be a topological surface. A surface of revolution can be viewed as a special kind of parametric surface. If f is a smooth function from R 3 to R whose gradient is nowhere zero, then the locus of zeros of f does define a surface, known as an implicit surface. If the condition of non-vanishing gradient is dropped ...