Search results
Results from the WOW.Com Content Network
Sulfur reduction occurs in plants, fungi, and many bacteria. [10] Sulfate can serve as an electron acceptor in anaerobic respiration and can also be reduced for the formation of organic compounds. Sulfate-reducing bacteria reduce sulfate and other oxidized sulfur compounds, such as sulfite, thiosulfate, and elemental sulfur, to sulfide.
Nutrients in the soil are taken up by the plant through its roots, and in particular its root hairs.To be taken up by a plant, a nutrient element must be located near the root surface; however, the supply of nutrients in contact with the root is rapidly depleted within a distance of ca. 2 mm. [14] There are three basic mechanisms whereby nutrient ions dissolved in the soil solution are brought ...
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. [1]
Sulfur gases are potentially phytotoxic, however, they may also be metabolized and used as sulfur source and even be beneficial if the sulfur fertilization of the roots is not sufficient. Plant shoots form a sink for atmospheric sulfur gases, which can directly be taken up by the foliage (dry deposition).
Flowers of Sulfur can be used as a humid sulfur vapor test for creep corrosion. [12] Creep corrosion is the corrosion of copper or silver caused by sulfur pollution and causes failure in electronic products. Sulfur pollution includes elemental sulfur, sulfur dioxide, and hydrogen sulfide, which can oxidize metals. [13]
Sulfur isotope biogeochemistry is the study of the distribution of sulfur isotopes in biological and geological materials. In addition to its common isotope, 32 S, sulfur has three rare stable isotopes: 34 S, 36 S, and 33 S.
Green sulfur bacteria exhibit activity from a Type-1 secretion system and a ferredoxin-NADP+ oxidoreductase to generate reduced iron, a trait that evolved to support nitrogen fixation. [34] Like purple sulfur bacteria, they can regulate the activity of nitrogenase post-translationally in response to ammonia concentrations.