Search results
Results from the WOW.Com Content Network
Because operator overloading allows the original programmer to change the usual semantics of an operator and to catch any subsequent programmers by surprise, it is considered good practice to use operator overloading with care (the creators of Java decided not to use this feature, [3] although not necessarily for this reason).
In the C++ programming language, the assignment operator, =, is the operator used for assignment.Like most other operators in C++, it can be overloaded.. The copy assignment operator, often just called the "assignment operator", is a special case of assignment operator where the source (right-hand side) and destination (left-hand side) are of the same class type.
All the operators (except typeof) listed exist in C++; the column "Included in C", states whether an operator is also present in C. Note that C does not support operator overloading. When not overloaded, for the operators && , || , and , (the comma operator ), there is a sequence point after the evaluation of the first operand.
This is an example of overloading or more specifically, operator overloading. Note the ambiguity in the string types used in the last case. Consider "123" + "456" in which the programmer might naturally assume addition rather than concatenation. They may expect "579" instead of "123456". Overloading can therefore provide different meaning, or ...
Common simple examples include arithmetic (e.g. addition with +), comparison (e.g. "greater than" with >), and logical operations (e.g. AND, also written && in some languages). More involved examples include assignment (usually = or :=), field access in a record or object (usually .), and the scope resolution operator (often :: or .). Languages ...
Often the compiler selects the overload to call based on the type of the input arguments or it fails if the input arguments do not select an overload. Older and weakly-typed languages generally do not support overloading. Here is an example of overloading in C++, two functions Area that accept different types:
C++ also has complex language features, such as classes, templates, namespaces, and operator overloading, that alter the meaning of specific symbols based on context or usage. Meta-data about these features can be disambiguated by mangling (decorating) the name of a symbol. Because the name-mangling systems for such features are not ...
The first is taken in C++: "in C++, there is no overloading across scopes." [ 12 ] As a result, to obtain an overload set with functions declared in different scopes, one needs to explicitly import the functions from the outer scope into the inner scope, with the using keyword.