Search results
Results from the WOW.Com Content Network
As an example, assume that 22.45±0.03 cm 3 of the sodium hydroxide solution reacts with 781.4±0.1 mg of potassium hydrogen iodate. As the equivalent weight of potassium hydrogen iodate is 389.92 g, the measured mass is 2.004 milliequivalents. The concentration of the sodium hydroxide solution is therefore 2.004 meq/0.02245 L = 89.3 meq/L.
This is especially common for measurement of compounds in biological fluids; for instance, the healthy level of potassium in the blood of a human is defined between 3.5 and 5.0 mEq/L. A certain amount of univalent ions provides the same amount of equivalents while the same amount of divalent ions provides twice the amount of equivalents.
An example for a simple case (mono-compartmental) would be to administer D=8 mg/kg to a human. A human has a blood volume of around V b l o o d = {\displaystyle V_{blood}=} 0.08 L/kg . [ 7 ] This gives a C 0 = {\displaystyle C_{0}=} 100 μg/mL if the drug stays in the blood stream only, and thus its volume of distribution is the same as V b l o ...
Therefore, it is common to equate 1 kilogram of water with 1 L of water. Consequently, 1 ppm corresponds to 1 mg/L and 1 ppb corresponds to 1 μg/L. Similarly, parts-per notation is used also in physics and engineering to express the value of various proportional phenomena.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
In the International System of Units (SI), the coherent unit of molar mass is kg/mol. However, for historical reasons, molar masses are almost always expressed in g/mol. The mole was defined in such a way that the molar mass of a compound, in g/mol, is numerically equal to the average mass of one molecule or formula unit, in daltons.