Search results
Results from the WOW.Com Content Network
As opposed to C# extension methods, Java default methods are instance methods on the interface that declare them. Definition of default methods in classes that implement the interface is optional: If the class does not define the method, the default definition is used instead.
In object-oriented programming, a covariant return type of a method is one that can be replaced by a "narrower" (derived) type when the method is overridden in a subclass. A notable language in which this is a fairly common paradigm is C++. C# supports return type covariance as of version 9.0. [1]
In Java, a method signature is composed of a name and the number, type, and order of its parameters. Return types and thrown exceptions are not considered to be a part of the method signature, nor are the names of parameters; they are ignored by the compiler for checking method uniqueness.
In C#, class methods, indexers, properties and events can all be overridden. Non-virtual or static methods cannot be overridden. The overridden base method must be virtual, abstract, or override. In addition to the modifiers that are used for method overriding, C# allows the hiding of an inherited property or method.
In computer programming, the return type (or result type) defines and constrains the data type of the value returned from a subroutine or method. [1] In many programming languages (especially statically-typed programming languages such as C, C++, Java) the return type must be explicitly specified when declaring a function.
In object-oriented computer programming, a null object is an object with no referenced value or with defined neutral (null) behavior.The null object design pattern, which describes the uses of such objects and their behavior (or lack thereof), was first published as "Void Value" [1] and later in the Pattern Languages of Program Design book series as "Null Object".
Versioning: A method may be declared to throw exceptions X and Y. In a later version of the code, one cannot throw exception Z from the method, because it would make the new code incompatible with the earlier uses. Checked exceptions require the method's callers to either add Z to their throws clause or handle the exception.
In Java—and similar languages modeled after it, like JavaScript—it is possible to execute code even after return statement, because the finally block of a try-catch structure is always executed. So if the return statement is placed somewhere within try or catch blocks the code within finally (if added) will be executed. It is even possible ...