Search results
Results from the WOW.Com Content Network
In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...
A set of books extracted from the Project Gutenberg books library Text Natural Language Processing 2019 Jack W et al. Deepmind Mathematics: Mathematical question and answer pairs. Text Natural Language Processing 2018 [115] D Saxton et al. Anna's Archive: A comprehensive archive of published books and papers None 100,356,641 Text, epub, PDF
A First Course on Time Series Analysis – an open source book on time series analysis with SAS (Chapter 7) Box–Jenkins models in the Engineering Statistics Handbook of NIST; Box–Jenkins modelling by Rob J Hyndman; The Box–Jenkins methodology for time series models by Theresa Hoang Diem Ngo
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [ 17 ]
In 1991, a CNN was applied to medical image object segmentation [55] and breast cancer detection in mammograms. [56] LeNet -5 (1998), a 7-level CNN by Yann LeCun et al., that classifies digits, was applied by several banks to recognize hand-written numbers on checks digitized in 32×32 pixel images.
Convolutional networks can provide an improved forecasting performance when there are multiple similar time series to learn from. [147] CNNs can also be applied to further tasks in time series analysis (e.g., time series classification [ 148 ] or quantile forecasting [ 149 ] ).
The two historically common activation functions are both sigmoids, and are described by = = (+).The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function, which is similar in shape but ranges from 0 to 1.