Search results
Results from the WOW.Com Content Network
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
Once the DN factor of a bearing has been obtained, it can be used to consult grease selection charts in order to determine the correct lubricant. Viscosity must be matched to the needs of the bearing in order to obtain maximum efficiency, and to avoid lubricant runout due to overheating, which is a consequence of metal-on-metal contact, as well ...
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are ζ , μ ′ , μ b , κ {\displaystyle \zeta ,\mu ',\mu _{\mathrm {b} },\kappa } or ξ {\displaystyle \xi } .
Relative viscosity (a synonym of "viscosity ratio") is the ratio of the viscosity of a solution to the viscosity of the solvent used (), =. The significance in Relative viscosity is that it can be analyzed the effect a polymer can have on a solution's viscosity such as increasing the solutions viscosity.
The viscosity of the sample is then calculated using the following equation: = ˙ where is the sample viscosity, and is the force applied to the sample to pull it apart. Much like the Meissner-type rheometer, the SER rheometer uses a set of two rollers to strain a sample at a given rate. [ 31 ]