enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  3. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is

  4. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    The Joint Probability reconciles these two predictions by multiplying them together. The last line (the Posterior Probability) is calculated by dividing the Joint Probability for each hypothesis by the sum of both joint probabilities.

  5. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  6. Joint entropy - Wikipedia

    en.wikipedia.org/wiki/Joint_entropy

    The continuous version of discrete joint entropy is called joint differential (or continuous) entropy. Let and be a continuous random variables with a joint probability density function (,). The differential joint entropy (,) is defined as [3]: 249

  7. Cross-covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Cross-covariance_matrix

    In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions.

  8. Elliptical distribution - Wikipedia

    en.wikipedia.org/wiki/Elliptical_distribution

    In probability and statistics, an elliptical distribution is any member of a broad family of probability distributions that generalize the multivariate normal distribution. Intuitively, in the simplified two and three dimensional case, the joint distribution forms an ellipse and an ellipsoid, respectively, in iso-density plots.

  9. Bapat–Beg theorem - Wikipedia

    en.wikipedia.org/wiki/Bapat–Beg_theorem

    In probability theory, the Bapat–Beg theorem gives the joint probability distribution of order statistics of independent but not necessarily identically distributed random variables in terms of the cumulative distribution functions of the random variables. Ravindra Bapat and M.I. Beg published the theorem in 1989, [1] though they did not ...