Ad
related to: quantum color charge meter
Search results
Results from the WOW.Com Content Network
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.
Quarks are massive spin-1 ⁄ 2 fermions that carry a color charge whose gauging is the content of QCD. Quarks are represented by Dirac fields in the fundamental representation 3 of the gauge group SU(3). They also carry electric charge (either − 1 ⁄ 3 or + 2 ⁄ 3) and participate in weak interactions as part of weak isospin doublets.
According to quantum chromodynamics (QCD), quarks possess a property called color charge. There are three types of color charge, arbitrarily labeled blue, green, and red. [nb 6] Each of them is complemented by an anticolor – antiblue, antigreen, and antired. Every quark carries a color, while every antiquark carries an anticolor. [76]
The theory of quantum chromodynamics explains that quarks carry what is called a color charge, although it has no relation to visible color. [6] Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the gluon.
For normal hadrons, a white color can thus be achieved in one of three ways: A quark of one color with an antiquark of the corresponding anticolor, giving a meson with baryon number 0, Three quarks of different colors, giving a baryon with baryon number +1, Three antiquarks of different anticolors, giving an antibaryon with baryon number −1.
Gluons carry the color charge of the strong interaction, thereby participating in the strong interaction as well as mediating it. Because gluons carry the color charge, QCD is more difficult to analyze compared to quantum electrodynamics (QED) where the photon carries no electric charge.
Each is a scalar field, for some component of spacetime and gluon color charge. The Gell-Mann matrices λ a are eight 3 × 3 matrices which form matrix representations of the SU (3) group . They are also generators of the SU(3) group, in the context of quantum mechanics and field theory; a generator can be viewed as an operator corresponding to ...
Color transparency [1] [2] is a phenomenon observed in high-energy particle physics, where hadrons (particles made of quarks such as a proton or mesons) created in a nucleus propagate through that nucleus with less interaction than expected. It suggests that hadrons are first created with a small size in the nucleus, and then grow to their ...
Ad
related to: quantum color charge meter