enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signal-flow graph - Wikipedia

    en.wikipedia.org/wiki/Signal-flow_graph

    A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, [1] but often called a Mason graph after Samuel Jefferson Mason who coined the term, [2] is a specialized flow graph, a directed graph in which nodes represent system variables, and branches (edges, arcs, or arrows) represent functional connections between pairs of nodes.

  3. Mason's gain formula - Wikipedia

    en.wikipedia.org/wiki/Mason's_gain_formula

    Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.

  4. Minor loop feedback - Wikipedia

    en.wikipedia.org/wiki/Minor_loop_feedback

    This example is slightly simplified (no gears between the motor and the load) from the control system for the Harlan J. Smith Telescope at the McDonald Observatory. [6] In the figure there are three feedback loops: current control loop, velocity control loop and position control loop. The last is the main loop. The other two are minor loops.

  5. Noncommutative signal-flow graph - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_signal-flow...

    A multi-input, multi-output system represented as a noncommutative matrix signal-flow graph. In automata theory and control theory, branches of mathematics, theoretical computer science and systems engineering, a noncommutative signal-flow graph is a tool for modeling [1] interconnected systems and state machines by mapping the edges of a directed graph to a ring or semiring.

  6. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.

  7. Feed forward (control) - Wikipedia

    en.wikipedia.org/wiki/Feed_forward_(control)

    A control system which has only feed-forward behavior responds to its control signal in a pre-defined way without responding to the way the system reacts; it is in contrast with a system that also has feedback, which adjusts the input to take account of how it affects the system, and how the system itself may vary unpredictably.

  8. Flow graph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_graph_(mathematics)

    An example of a signal-flow graph Flow graph for three simultaneous equations. The edges incident on each node are colored differently just for emphasis. An example of a flow graph connected to some starting equations is presented. The set of equations should be consistent and linearly independent. An example of such a set is: [2]

  9. Closed-loop controller - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_controller

    The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero." [4]